Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Assist Reprod Genet ; 41(2): 297-309, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38236552

RESUMO

PURPOSE: Intracytoplasmic sperm injection (ICSI) imparts physical stress on the oolemma of the oocyte and remains among the most technically demanding skills to master, with success rates related to experience and expertise. ICSI is also time-consuming and requires workflow management in the laboratory. This study presents a device designed to reduce the pressure on the oocyte during injection and investigates if this improves embryo development in a porcine model. The impact of this device on laboratory workflow was also assessed. METHODS: Porcine oocytes were matured in vitro and injected with porcine sperm by conventional ICSI (C-ICSI) or with microICSI, an ICSI dish that supports up to 20 oocytes housed individually in microwells created through microfabrication. Data collected included set-up time, time to align the polar body, time to perform the injection, the number of hand adjustments between controllers, and degree of invagination at injection. Developmental parameters measured included cleavage and day 6 blastocyst rates. Blastocysts were differentially stained to assess cell numbers of the inner cell mass and trophectoderm. A pilot study with human donated MII oocytes injected with beads was also performed. RESULTS: A significant increase in porcine blastocyst rate for microICSI compared to C-ICSI was observed, while cleavage rates and blastocyst cell numbers were comparable between treatments. Procedural efficiency of microinjection was significantly improved with microICSI compared to C-ICSI in both species. CONCLUSION: The microICSI device demonstrated significant developmental and procedural benefits for porcine ICSI. A pilot study suggests human ICSI should benefit equally.


Assuntos
Sêmen , Injeções de Esperma Intracitoplásmicas , Humanos , Masculino , Animais , Suínos , Microinjeções , Projetos Piloto , Oócitos , Desenvolvimento Embrionário , Blastocisto
2.
Xenotransplantation ; : e12836, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37961013

RESUMO

BACKGROUND: Pig islet xenotransplantation is a potential treatment for type 1 diabetes. We have shown that maintenance immunosuppression is required to protect genetically modified (GM) porcine islet xenografts from T cell-mediated rejection in baboons. Local expression of a depleting anti-CD2 monoclonal antibody (mAb) by the xenograft may provide an alternative solution. We have previously reported the generation of GGTA1 knock-in transgenic pigs expressing the chimeric anti-CD2 mAb diliximab under an MHC class I promoter (MHCIP). In this study, we generated GGTA1 knock-in pigs in which MHCIP was replaced by the ß-cell-specific porcine insulin promoter (PIP), and compared the pattern of diliximab expression in the two lines. METHODS: A PIP-diliximab knock-in construct was prepared and validated by transfection of NIT-1 mouse insulinoma cells. The construct was knocked into GGTA1 in wild type (WT) porcine fetal fibroblasts using CRISPR, and knock-in cells were used to generate pigs by somatic cell nuclear transfer (SCNT). Expression of the transgene in MHCIP-diliximab and PIP-diliximab knock-in pigs was characterised at the mRNA and protein levels using RT-qPCR, flow cytometry, ELISA and immunohistochemistry. Islets from MHCIP-diliximab and control GGTA1 KO neonatal pigs were transplanted under the kidney capsule of streptozotocin-diabetic SCID mice. RESULTS: NIT-1 cells stably transfected with the PIP-diliximab knock-in construct secreted diliximab into the culture supernatant, confirming correct expression and processing of the mAb in ß cells. PIP-diliximab knock-in pigs showed a precise integration of the transgene within GGTA1. Diliximab mRNA was detected in all tissues tested (spleen, kidney, heart, liver, lung, pancreas) in MHCIP-diliximab pigs, but was not detectable in PIP-diliximab pigs. Likewise, diliximab was present in the serum of MHCIP-diliximab pigs, at a mean concentration of 1.8 µg/mL, but was not detected in PIP-diliximab pig serum. An immunohistochemical survey revealed staining for diliximab in all organs of MHCIP-diliximab pigs but not of PIP-diliximab pigs. Whole genome sequencing (WGS) of a PIP-diliximab pig identified a missense mutation in the coding region for the dixilimab light chain. This mutation was also found to be present in the fibroblast knock-in clone used to generate the PIP-diliximab pigs. Islet xenografts from neonatal MHCIP-diliximab pigs restored normoglycemia in diabetic immunodeficient mice, indicating no overt effect of the transgene on islet function, and demonstrated expression of diliximab in situ. CONCLUSION: Diliximab was widely expressed in MHCIP-diliximab pigs, including in islets, consistent with the endogenous expression pattern of MHC class I. Further investigation is required to determine whether the level of expression in islets from the MHCIP-diliximab pigs is sufficient to prevent T cell-mediated islet xenograft rejection. The unexpected absence of diliximab expression in the islets of PIP-diliximab pigs was probably due to a mutation in the transgene arising during the generation of the knock-in cells used for SCNT.

3.
Xenotransplantation ; 30(1): e12782, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36413478

RESUMO

A number of reviews have been written recently celebrating the 25th anniversary of the birth of Dolly the cloned sheep and the effect this breakthrough has had on various fields of research. However, arguably the biggest impact Dolly has had is on the field of xenotransplantation, described here based on our own experience and that of others.


Assuntos
Clonagem de Organismos , Técnicas de Transferência Nuclear , Animais , Ovinos , Transplante Heterólogo
4.
Front Immunol ; 13: 898948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784286

RESUMO

Xenotransplantation using porcine donors is rapidly approaching clinical applicability as an alternative therapy for treatment of many end-stage diseases including type 1 diabetes. Porcine neonatal islet cell clusters (NICC) have normalised blood sugar levels for relatively short periods in the preclinical diabetic rhesus model but have met with limited success in the stringent baboon model. Here we report that NICC from genetically modified (GM) pigs deleted for αGal and expressing the human complement regulators CD55 and CD59 can cure diabetes long-term in immunosuppressed baboons, with maximum graft survival exceeding 22 months. Five diabetic baboons were transplanted intraportally with 9,673 - 56,913 islet equivalents (IEQ) per kg recipient weight. Immunosuppression consisted of T cell depletion with an anti-CD2 mAb, tacrolimus for the first 4 months, and maintenance with belatacept and anti-CD154; no anti-inflammatory treatment or cytomegalovirus (CMV) prophylaxis/treatment was given. This protocol was well tolerated, with all recipients maintaining or gaining weight. Recipients became insulin-independent at a mean of 87 ± 43 days post-transplant and remained insulin-independent for 397 ± 174 days. Maximum graft survival was 675 days. Liver biopsies showed functional islets staining for all islet endocrine components, with no evidence of the inflammatory blood-mediated inflammatory reaction (IBMIR) and minimal leukocytic infiltration. The costimulation blockade-based immunosuppressive protocol prevented an anti-pig antibody response in all recipients. In conclusion, we demonstrate that genetic modification of the donor pig enables attenuation of early islet xenograft injury, and in conjunction with judicious immunosuppression provides excellent long-term function and graft survival in the diabetic baboon model.


Assuntos
Diabetes Mellitus Tipo 1 , Doenças do Recém-Nascido , Insulinas , Transplante das Ilhotas Pancreáticas , Animais , Humanos , Recém-Nascido , Papio , Transplante Heterólogo/métodos
5.
Xenotransplantation ; 27(1): e12551, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407391

RESUMO

Gene editing using clustered regularly interspaced short palindromic repeats/Cas9 has great potential for improving the compatibility of porcine organs with human recipients. However, the risk of detrimental off-target mutations in gene-edited pigs remains largely undefined. We have previously generated GGTA1 knock-in pigs for xenotransplantation using FokI-dCas9, a variant of Cas9 that is reported to reduce the frequency of off-target mutagenesis. In this study, we used whole genome sequencing (WGS) and optimized bioinformatic analysis to assess the fidelity of FokI-dCas9 editing in the generation of these pigs. Genomic DNA was isolated from porcine cells before and after gene editing and sequenced by WGS. The genomic sequences were analyzed using GRIDSS variant-calling software to detect putative structural variations (SVs), which were validated by PCR of DNA from knock-in and wild-type pigs. Platypus variant-calling software was used to detect single-nucleotide variations (SNVs) and small insertions/deletions (indels). GRIDSS analysis confirmed the precise integration of one copy of the knock-in construct in the gene-edited cells. Three additional SVs were detected by GRIDSS: deletions in intergenic regions in chromosome 6 and the X chromosome and a duplication of part of the CALD1 gene on chromosome 18. These mutations were not associated with plausible off-target sites, and were not detected in a second line of knock-in pigs generated using the same pair of guide RNAs, suggesting that they were the result of background mutation rather than off-target activity. Platypus identified 1375 SNVs/indels after quality filtering, but none of these were located in proximity to potential off-target sites, indicating that they were probably also spontaneous mutations. This is the first WGS analysis of pigs generated from FokI-dCas9-edited cells. Our results demonstrate that FokI-dCas9 is capable of high-fidelity gene editing with negligible off-target or undesired on-target mutagenesis.


Assuntos
Proteína 9 Associada à CRISPR/genética , Biologia Computacional/métodos , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Edição de Genes/métodos , Mutação/genética , Animais , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Análise Mutacional de DNA , Estudos de Viabilidade , Sus scrofa , Transplante Heterólogo , Sequenciamento Completo do Genoma
6.
Curr Opin Organ Transplant ; 24(1): 5-11, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30480643

RESUMO

PURPOSE OF REVIEW: The use of genetically modified donor pigs has been integral to recent major advances in xenograft survival in preclinical nonhuman primate models. CRISPR-Cas9 gene editing technology has dramatically accelerated the development of multimodified pigs. This review examines the current and projected impact of CRISPR-Cas9-mediated donor modification on preventing rejection and potentially promoting tolerance of porcine xenografts. RECENT FINDINGS: CRISPR-Cas9 has been used to engineer several genetic modifications relevant to xenotransplantation into pigs, including glycosyltransferase knockouts (GGTA1, CMAH, ß4GALNT2, A3GALT2 and combinations thereof), other knockouts (SLA-I, ULBP1, PERV and GHR), and one knock-in (anti-CD2 monoclonal antibody transgene knocked into GGTA1). Although the use of these pigs as donors in preclinical nonhuman primate models has been limited to a single study to date, in-vitro analysis of their cells has provided invaluable information. For example, deletion of three of the glycosyltransferases progressively decreased the binding and cytotoxicity of preexisting immunoglobulin G and immunoglobulin M in human sera, suggesting that this 'triple-KO' pig could be a platform for clinical xenotransplantation. SUMMARY: CRISPR-Cas9 enables the rapid generation of gene-edited pigs containing multiple tailored genetic modifications that are anticipated to have a positive impact on the efficacy and safety of pig-to-human xenotransplantation.


Assuntos
Anticorpos Heterófilos/genética , Sistemas CRISPR-Cas/imunologia , Transplante Heterólogo/métodos , Animais , Animais Geneticamente Modificados , Humanos , Suínos
7.
Sci Rep ; 7(1): 8383, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814758

RESUMO

Xenotransplantation from pigs has been advocated as a solution to the perennial shortage of donated human organs and tissues. CRISPR/Cas9 has facilitated the silencing of genes in donor pigs that contribute to xenograft rejection. However, the generation of modified pigs using second-generation nucleases with much lower off-target mutation rates than Cas9, such as FokI-dCas9, has not been reported. Furthermore, there have been no reports on the use of CRISPR to knock protective transgenes into detrimental porcine genes. In this study, we used FokI-dCas9 with two guide RNAs to integrate a 7.1 kilobase pair transgene into exon 9 of the GGTA1 gene in porcine fetal fibroblasts. The modified cells lacked expression of the αGal xenoantigen, and secreted an anti-CD2 monoclonal antibody encoded by the transgene. PCR and sequencing revealed precise integration of the transgene into one allele of GGTA1, and a small deletion in the second allele. The cells were used for somatic cell nuclear transfer to generate healthy male knock-in piglets, which did not express αGal and which contained anti-CD2 in their serum. We have therefore developed a versatile high-fidelity system for knocking transgenes into the pig genome for xenotransplantation purposes.


Assuntos
Anticorpos Monoclonais/genética , Antígenos CD2/imunologia , Proteína 9 Associada à CRISPR/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Galactosiltransferases/genética , Suínos/genética , Animais , Animais Geneticamente Modificados , Feminino , Fibroblastos , Técnicas de Introdução de Genes , Marcação de Genes , Humanos , Masculino , Técnicas de Transferência Nuclear , Gravidez , Reprodutibilidade dos Testes , Transgenes
8.
Theriogenology ; 86(4): 1008-1013, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125697

RESUMO

The present study was undertaken to examine the effect of feed restriction on ovulation rate and in vivo blastocyst development in gilts and sows. In the first experiment, gilts were feed restricted (1 vs. 2.5 times maintenance requirement) during the luteal and follicular phases before ovulation. In the second experiment, primiparous sows were feed restricted (ad lib vs. 60% thereof) during the last week of lactation before weaning. Gilts and sows were slaughtered at 5 days after ovulation to determine ovulation rate and blastocyst development. Blastocysts were also differentially stained to determine the effect of feed restriction on total, trophectoderm, and inner cell mass cell numbers. In both experiments, feed restriction delayed ovulation and reduced the number of ovulations in gilts (14.8 ± 1.3 vs. 12.0 ± 0.2; P < 0.05) and in sows (19.9 ± 1.0 vs. 18.4 ± 0.7). The number of blastocysts recovered on Day 5 was similarly reduced in gilts (12.0 ± 1.7 vs. 9.1 ± 1.1; P < 0.10) and in sows (15.9 ± 1.5 vs. 14.7 ± 1.0). However, feed restriction did not affect total, trophectoderm, or inner cell mass cell numbers in gilts or sows. In conclusion, the present study reported that energy balance influences ovulation rate and blastocyst number rather than blastocyst viability as measured by cell number.


Assuntos
Metabolismo Energético/fisiologia , Privação de Alimentos/fisiologia , Ovulação/fisiologia , Suínos/fisiologia , Animais , Blastocisto/fisiologia , Feminino , Paridade , Gravidez , Suínos/embriologia
9.
Xenotransplantation ; 22(6): 413-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26490547

RESUMO

BACKGROUND: Survival of vascularized xenografts is dependent on pre-emptive inhibition of the xenoantibody response against galactosyltransferase knockout (GTKO) porcine organs. Our analysis in multiple GTKO pig-to-primate models of xenotransplantation has demonstrated that the anti-non-gal-α-1,3-gal (anti-non-Gal) xenoantibody response displays limited structural diversity. This allowed our group to identify an experimental compound which selectively inhibited induced anti-non-Gal IgM xenoantibodies. However, because this compound had an unknown safety profile, we extended this line of research to include screening small molecules with known safety profiles allowing rapid advancement to large animal models. METHODS: The NIH clinical collections of small molecules were screened by ELISA for their ability to inhibit xenoantibody binding to GTKO pig endothelial cells. Serum collected from non-immunosuppressed rhesus monkeys at day 14 post-injection with GTKO pig endothelial cells was utilized as a source of elicited xenoantibody for initial screening. Virtual small molecule screening based on xenoantibody structure was used to assess the likelihood that the identified small molecules bound xenoantibody directly. As a proxy for selectivity, ELISAs against tetanus toxoid and the natural antigens laminin, thyroglobulin, and single-stranded DNA (ssDNA) were utilized to assess the ability of the identified reagents to inhibit additional antibody responses. The identified inhibitory small molecules were further tested for their ability to inhibit xenoantibody elicited in multiple settings, including rhesus monkeys pre-treated with an anti-non-Gal selective anti-idiotypic antibody, non-immunosuppressed rhesus monkeys immunized with wild-type fetal pig isletlike cell clusters, and non-immunosuppressed baboons transplanted with GTKO multiple transgenic pig kidneys. RESULTS: Four clinically relevant small molecules inhibited anti-non-Gal IgM binding to GTKO pig endothelial cells in vitro. Three of these drugs displayed a limited region of structural similarity suggesting they may inhibit xenoantibody by a similar mechanism. One of these, the anti-hypertensive agent clonidine, displayed only minimal inhibition of antibodies elicited by vaccination against tetanus toxoid or pre-existing natural antibodies against laminin, thyroglobulin, or ssDNA. Furthermore, clonidine inhibited elicited anti-non-Gal IgM from all animals that demonstrated a xenoantibody response in each experimental setting. CONCLUSIONS: Clinically relevant small molecule drugs with known safety profiles can inhibit xenoantibody elicited against non-Gal antigens in diverse experimental xenotransplantation settings. These molecules are ready to be tested in large animal models. However, it will first be necessary to optimize the timing and dosing required to inhibit xenoantibodies in vivo.


Assuntos
Anticorpos Heterófilos/sangue , Clonidina/farmacologia , Xenoenxertos/imunologia , Papio/imunologia , Animais , Técnicas de Inativação de Genes , Imunoglobulina M/imunologia , Macaca mulatta , Modelos Animais , Sus scrofa , Suínos , Transplante Heterólogo/métodos
10.
Xenotransplantation ; 21(5): 431-43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25040113

RESUMO

BACKGROUND: Human corneal allografting is an established procedure to cure corneal blindness. However, a shortage of human donor corneas as well as compounding economic, cultural, and organizational reasons in many countries limit its widespread use. Artificial corneas as well as porcine corneal xenografts have been considered as possible alternatives. To date, all preclinical studies using de-cellularized pig corneas have shown encouraging graft survival results; however, relatively few studies have been conducted in pig to non-human primate (NHP) models, and particularly using genetically engineered donors. METHODS: In this study, we assessed the potential benefit of using either hCTLA4-Ig transgenic or α1,3-Galactosyl Transferase (GT) Knock-Out (KO) plus transgenic hCD39/hCD55/hCD59/fucosyl-transferase pig lines in an anterior lamellar keratoplasty pig to NHP model. RESULTS: Corneas from transgenic animals expressing hCTLA4-Ig under the transcriptional control of a neuron-specific enolase promoter showed transgene expression in corneal keratocytes of the stroma and expression was maintained after transplantation. Although a first acute rejection episode occurred in all animals during the second week post-keratoplasty, the median final rejection time was 70 days in the hCTLA4-Ig group vs. 21 days in the wild-type (WT) control group. In contrast, no benefit for corneal xenograft survival from the GTKO/transgenic pig line was found. At rejection, cell infiltration in hCTLA4Ig transgenic grafts was mainly composed of macrophages with fewer CD3+ CD4+ and CD79+ cells than in other types of grafts. Anti-donor xenoantibodies increased dramatically between days 9 and 14 post-surgery in all animals. CONCLUSIONS: Local expression of the hCTLA4-Ig transgene dampens rejection of xenogeneic corneal grafts in this pig-to-NHP lamellar keratoplasty model. The hCTLA4-Ig transgene seems to target T-cell responses without impacting humoral responses, the control of which would presumably require additional peripheral immunosuppression.


Assuntos
Ceratócitos da Córnea/metabolismo , Transplante de Córnea/métodos , Rejeição de Enxerto/prevenção & controle , Imunoconjugados/metabolismo , Transgenes , Transplante Heterólogo/métodos , Abatacepte , Animais , Animais Geneticamente Modificados , Biomarcadores/metabolismo , Ceratócitos da Córnea/imunologia , Rejeição de Enxerto/genética , Rejeição de Enxerto/imunologia , Sobrevivência de Enxerto/genética , Sobrevivência de Enxerto/imunologia , Imunoconjugados/genética , Macaca fascicularis , Masculino , Modelos Animais , Sus scrofa/genética
11.
Xenotransplantation ; 21(4): 341-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24806998

RESUMO

BACKGROUND: Xenotransplantation of porcine organs holds promise of solving the human organ donor shortage. The use of α-1,3-galactosyltransferase knockout (GTKO) pig donors mitigates hyperacute rejection, while delayed rejection is currently precipitated by potent immune and hemostatic complications. Previous analysis by our laboratory suggests that clotting factor VIII (FVIII) inhibitors might be elicited by the structurally restricted xenoantibody response which occurs after transplantation of either pig GTKO/hCD55/hCD59/hHT transgenic neonatal islet cell clusters or GTKO endothelial cells. METHODS: A recombinant xenoantibody was generated using sequences from baboons demonstrating an active xenoantibody response at day 28 after GTKO/hCD55/hCD59/hHT transgenic pig neonatal islet cell cluster transplantation. Rhesus monkeys were immunized with GTKO pig endothelial cells to stimulate an anti-non-Gal xenoantibody response. Serum was collected at days 0 and 7 after immunization. A two-stage chromogenic assay was used to measure FVIII cofactor activity and identify antibodies which inhibit FVIII function. Molecular modeling and molecular dynamics simulations were used to predict antibody structure and the residues which contribute to antibody-FVIII interactions. Competition ELISA was used to verify predictions at the domain structural level. RESULTS: Antibodies that inhibit recombinant human FVIII function are elicited after non-human primates are transplanted with either GTKO pig neonatal islet cell clusters or endothelial cells. There is an apparent increase in inhibitor titer by 15 Bethesda units (Bu) after transplant, where an increase greater than 5 Bu can indicate pathology in humans. Furthermore, competition ELISA verifies the computer modeled prediction that the recombinant xenoantibody, H66K12, binds the C1 domain of FVIII. CONCLUSIONS: The development of FVIII inhibitors is a novel illustration of the potential impact the humoral immune response can have on coagulative dysfunction in xenotransplantation. However, the contribution of these antibodies to rejection pathology requires further evaluation because "normal" coagulation parameters after successful xenotransplantation are not fully understood.


Assuntos
Fator VIII/antagonistas & inibidores , Transplante das Ilhotas Pancreáticas/efeitos adversos , Macaca mulatta/imunologia , Papio/imunologia , Transplante Heterólogo/efeitos adversos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Anticorpos Heterófilos/biossíntese , Anticorpos Heterófilos/química , Anticorpos Heterófilos/genética , Simulação por Computador , Células Endoteliais/imunologia , Células Endoteliais/transplante , Fator VIII/química , Galactosiltransferases/genética , Galactosiltransferases/imunologia , Técnicas de Inativação de Genes , Humanos , Transplante das Ilhotas Pancreáticas/imunologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Sus scrofa
12.
Xenotransplantation ; 21(3): 244-53, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24645827

RESUMO

BACKGROUND: Promising developments in porcine islet xenotransplantation could resolve the donor pancreas shortage for patients with type 1 diabetes. Using α1,3-galactosyltransferase gene knockout (GTKO) donor pigs with multiple transgenes should extend xenoislet survival via reducing complement activation, thrombus formation, and the requirement for exogenous immune suppression. Studying the xenoantibody response to GTKO/hCD55/hCD59/hHT islets in the pig-to-baboon model, and comparing it with previously analyzed responses, would allow the development of inhibitory reagents capable of targeting conserved idiotypic regions. METHODS: We generated IgM heavy and light chain gene libraries from 10 untreated baboons and three baboons at 28 days following transplantation of GTKO/hCD55/hCD59/hHT pig neonatal islet cell clusters with immunosuppression. Flow cytometry was used to confirm the induction of a xenoantibody response. IgM germline gene usage was compared pre- and post-transplant. Homology modeling was used to compare the structure of xenoantibodies elicited after transplantation of GTKO/hCD55/hCD59/hHT pig islets with those induced by GTKO and wild-type pig endothelial cells without further genetic modification. RESULTS: IgM xenoantibodies that bind to GTKO pig cells and wild-type pig cells were induced after transplantation. These anti-non-Gal antibodies were encoded by the IGHV3-66*02 (Δ28%) and IGKV1-12*02 (Δ25%) alleles, for the immunoglobulin heavy and light chains, respectively. IGHV3-66 is 86.7% similar to IGHV3-21 which was elicited by rhesus monkeys in response to GTKO endothelial cells. Heavy chain genes most similar to IGHV3-66 were found to utilize the IGHJ4 gene in 85% of V-D regions analyzed. However, unlike the wild-type response, a consensus complementary determining region 3 was not identified. CONCLUSIONS: Additional genetic modifications in transgenic GTKO pigs do not substantially modify the structure of the restricted group of anti-non-Gal xenoantibodies that mediate induced xenoantibody responses with or without immunosuppression. The use of this information to develop new therapeutic agents to target this restricted response will likely be beneficial for long-term islet cell survival and for developing targeted immunosuppressive regimens with less toxicity.


Assuntos
Animais Geneticamente Modificados , Anticorpos Heterófilos/metabolismo , Rejeição de Enxerto/imunologia , Imunoglobulina M/metabolismo , Transplante das Ilhotas Pancreáticas/métodos , Suínos/genética , Transplante Heterólogo/métodos , Sequência de Aminoácidos , Animais , Sequência de Bases , Biomarcadores/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes , Marcadores Genéticos , Rejeição de Enxerto/prevenção & controle , Imunoglobulina M/genética , Dados de Sequência Molecular , Papio
13.
Xenotransplantation ; 20(6): 449-57, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24112104

RESUMO

BACKGROUND: Immunological and histopathological features in pig-to-primate renal xenotransplantation are widely studied. Only limited data have been reported about clinicopathological findings in primate recipients of life-supporting renal xenografts. In human medicine, proteinuria represents a common complication in kidney transplantation and is associated with impaired graft survival. The detection of low molecular weight proteins of tubular origin is considered an early method for predicting potential graft rejection. In this study, the presence and the significance of quantitative and qualitative proteinuria were evaluated in xenotransplanted non-human primates in which kidney function was supported only by the transplanted organ. METHODS: Eight bilaterally nephrectomized cynomolgus monkeys (Macaca fascicularis) were transplanted with a single kidney from α1,3-galactosyltransferase gene-knockout (GTKO) pigs transgenic for human CD39, CD55, CD59, and α1,2-fucosyltransferase. In addition to hematological and biochemical analyses, quantitative and qualitative analysis of proteinuria was evaluated by urinary protein-to-creatinine ratio (UPC ratio) and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE), respectively. RESULTS: The main hematological and biochemical changes recorded after transplantation were a progressive anemia and a severe and progressive decrease in total proteins. In urine samples, the UPC ratio was low before transplantation and increased after transplantation. Similarly, SDS-AGE was negative before transplantation, but bands consistent with mixed (i.e., tubular and glomerular) proteinuria were observed in all samples collected post-transplantation. CONCLUSIONS: The study of clinicopathological changes in cynomolgus monkey renal xenograft recipients provides a valid help in monitoring the health conditions in the post-transplant period. Moreover, the evaluation of UPC ratio and the use of SDS-AGE technique in urine samples of cynomolgus monkey renal xenograft recipients may be considered a valid, inexpensive, and less time-consuming method than more sophisticated techniques in monitoring proteinuria. Proteinuria and presence of low molecular weight (LMW) proteins were consistently found in urine after transplantation, independent of fluctuations in renal function.


Assuntos
Xenoenxertos/patologia , Transplante de Rim/efeitos adversos , Proteinúria/etiologia , Animais , Animais Geneticamente Modificados , Antígenos CD/genética , Apirase/genética , Antígenos CD55/genética , Antígenos CD59/genética , Creatinina/urina , Feminino , Fucosiltransferases/genética , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Xenoenxertos/imunologia , Xenoenxertos/fisiopatologia , Humanos , Rim/imunologia , Rim/patologia , Rim/fisiopatologia , Macaca fascicularis , Modelos Animais , Primatas , Proteínas/química , Proteínas/isolamento & purificação , Proteinúria/patologia , Proteinúria/urina , Sus scrofa
14.
Methods Mol Biol ; 1074: 85-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23975807

RESUMO

Despite their agricultural and biomedical importance, embryonic stem cells (ESCs) are yet to be isolated for the pig or the domestic ungulates in general. This suggests that methods which have been used successfully in mice may not be applicable to these. In this chapter we describe a new method for the isolation of porcine ESCs. This method differs from those described previously in that it produces homogeneous outgrowths from undifferentiated inner cell mass cells when embryos are plated onto inactivated mouse embryonic feeder layers.


Assuntos
Blastocisto/citologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Suínos , Animais , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos , Células-Tronco Embrionárias/metabolismo , Células Alimentadoras , Fibroblastos/citologia , Humanos , Camundongos
15.
J Heart Lung Transplant ; 32(11): 1123-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23932853

RESUMO

BACKGROUND: Xenotransplantation could provide a solution to the donor shortage that is currently the major barrier to solid-organ transplantation. The ability to breed pigs with multiple genetic modifications provides a unique opportunity to explore the immunologic challenges of pulmonary xenotransplantation. METHODS: Explanted lungs from wild-type and 3 groups of genetically modified pigs were studied: (i) α1,3-galactosyltransferase gene knockout (GTKO); (ii) GTKO pigs expressing the human complementary regulatory proteins CD55 and CD59 (GTKO/CD55-59); and (iii) GTKO pigs expressing both CD55-59 and CD39 (GTKO/CD55-59/CD39). The physiologic, immunologic and histologic properties of porcine lungs were evaluated on an ex vivo rig after perfusion with human blood. RESULTS: Lungs from genetically modified pigs demonstrated stable pulmonary vascular resistance and better oxygenation of the perfusate, and survived longer than wild-type lungs. Physiologic function was inversely correlated with the degree of platelet sequestration into the xenograft. Despite superior physiologic profiles, lungs from genetically modified pigs still showed evidence of intravascular thrombosis and coagulopathy after perfusion with human blood. CONCLUSIONS: The ability to breed pigs with multiple genetic modifications, and to evaluate lung physiology and histology in real-time on an ex vivo rig, represent significant advances toward better understanding the challenges inherent to pulmonary xenotransplantation.


Assuntos
Animais Geneticamente Modificados/fisiologia , Transplante de Pulmão , Pulmão/fisiologia , Modelos Animais , Suínos/genética , Transplante Heterólogo , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Apirase/genética , Apirase/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Feminino , Galactosiltransferases/deficiência , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Técnicas de Inativação de Genes , Humanos , Masculino , Perfusão , Resistência Vascular/fisiologia
16.
Xenotransplantation ; 20(4): 252-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23865597

RESUMO

BACKGROUND: Glutaraldehyde fixation does not guarantee complete tissue biocompatibility in current clinical bioprosthetic heart valves (BHVs). Particularly, circulating anti-αGal human antibodies increase significantly from just 10 days after a BHV implantation. The inactivation of such epitope should be mandatory to meet the requirements for a perspectively safe clinical application; nevertheless, its quantitative assessment in commercially available BHVs has never been carried out. METHODS: In this investigation, seven different models of BHVs were tested. The number of epitopes was determined with reference to a standard αGal source by an ELISA test. The presence of xenoantigen was subsequently confirmed by immunofluorescence analysis. Porcine tissue, knockout for the αGal epitopes, was used as negative control. RESULTS: Epic™ valve was the only model among those tested, in which the αGal antigen appeared to be completely shielded. Composite Trifecta™ valve exhibited conflicting results: cusps of bovine pericardial tissue were devoid of reactive αGal epitopes, while the stent cover strip of porcine pericardium still maintained 30% of active antigens originally present in native tissue. All other tested BHVs express an αGal amount not significantly different from that exhibited by porcine Mosaic(®) valve (5.2 ± 0.6 × 10(10) each 10 mg of tissue). CONCLUSIONS: For the first time, the quantitative evaluation of the αGal epitope in heart valve bioprostheses, already in clinical practice for about 40 yrs, was finally determined. Such quantification might provide indications of biocompatibility relevant for the selection of bioprosthetic devices and an increase in the confidence of the patient. It might become a major quality control tool in the production and redirection of future investigation in the quest for αGal-free long-lasting substitutes.


Assuntos
Epitopos/imunologia , Galactosiltransferases/imunologia , Glutaral/farmacologia , Próteses Valvulares Cardíacas , Valvas Cardíacas/efeitos dos fármacos , Valvas Cardíacas/imunologia , Transplante Heterólogo/métodos , Animais , Anticorpos Anti-Idiotípicos/imunologia , Antígenos/imunologia , Bovinos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/genética , Galactosiltransferases/genética , Técnicas de Inativação de Genes , Rejeição de Enxerto/imunologia , Humanos , Masculino , Teste de Materiais , Modelos Animais , Suínos
17.
Biomed Res Int ; 2013: 150901, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23509681

RESUMO

Human embryos donated for embryonic stem cell (ESC) derivation have often been cryopreserved for 5-10 years. As a consequence, many of these embryos have been cultured in media now known to affect embryo viability and the number of ESC progenitor epiblast cells. Historically, these conditions supported only low levels of blastocyst development necessitating their transfer or cryopreservation at the 4-8-cell stage. As such, these embryos are donated at the cleavage stage and require further culture to the blastocyst stage before hESC derivation can be attempted. These are generally of poor quality, and, consequently, the efficiency of hESC derivation is low. Recent work using a mouse model has shown that the culture of embryos from the cleavage stage with insulin to day 6 increases the blastocyst epiblast cell number, which in turn increases the number of pluripotent cells in outgrowths following plating, and results in an increased capacity to give rise to ESCs. These findings suggest that culture with insulin may provide a strategy to improve the efficiency with which hESCs are derived from embryos donated at the cleavage stage.


Assuntos
Técnicas de Cultura Embrionária/métodos , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Camadas Germinativas/citologia , Camadas Germinativas/efeitos dos fármacos , Insulina/farmacologia , Animais , Blastocisto/citologia , Criopreservação , Meios de Cultura/farmacologia , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Transdução de Sinais , Fatores de Tempo
18.
Xenotransplantation ; 20(2): 89-99, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23406330

RESUMO

BACKGROUND: Activation of the clotting cascade is central in acute xenograft rejection (AHXR) that occurs when pig organs are transplanted into primates. The coagulopathy reported in this model is a very complex process that involves simultaneously coagulation factors, platelets and phospholipid-bearing cells (i.e., leukocytes, red blood cells, and endothelial cells). Choosing whole blood for coagulation analysis theoretically appears more favorable compared with plasma. Whole blood rotation thromboelastometry (ROTEM(®) ) is a point-of-care global coagulation analyzer able to evaluate the characteristics of clot formation and lysis by dynamic monitoring. The aim of this study was to record thromboelastographic profiles, performed by ROTEM(®) , in a series of immunosuppressed nephrectomized primates that received a life-supporting kidney. METHODS: Of the eight primates, n = 4 received a pig kidney transgenic for human decay-accelerating factor (hDAF/Gal+); n = 2, an α 1,3-galactosyltransferase gene-knockout (GT-KO) pig kidney transgenic for human CD39, CD55, CD59 and fucosyltransferase (HTF); and n = 2, a GT-KO pig kidney transgenic for hDAF. Blood samples were collected before and at least once per week after transplantation till euthanasia. Intrinsic (INTEM) and extrinsic (EXTEM) coagulation pathways and the function of fibrinogen (FIBTEM) were evaluated. Thromboelastographic parameters considered were clotting time (CT, seconds) and clot formation time (CFT, seconds) in INTEM and EXTEM and maximum clot firmness (MCF, mm) in FIBTEM. The correlations between CT in INTEM and activated partial thromboplastin time (aPTT), CT in EXTEM and PT, CFT in INTEM and EXTEM, and platelet counts and MCF in FIBTEM and fibrinogen plasma levels were also considered. RESULTS: In all animals, thromboelastographic profiles showed progressive prolongation of CT (activation of coagulative cascade) in INTEM. A close correspondence was observed between (i) the prolongation of the CFT values (propagation of clot formation), both in INTEM and EXTEM, and the decrease in platelet counts; (ii) the reduction in MCF values (clot firmness) ​​in FIBTEM and the decrease in fibrinogen plasma levels. No concordance between CT in INTEM and aPTT and between CT in EXTEM and PT was observed. CONCLUSIONS: Our study demonstrated that ROTEM(®) analyzer could be a useful and complementary tool to study the consumptive coagulopathy, either "compensated" or "non-compensated," that takes place when transgenic pig kidneys are transplanted into primates. Larger and prospective studies are needed to confirm our results and to evaluate the role of ROTEM(®) to guide the management of consumptive coagulopathy in order to prolong the survival of the transplanted organ.


Assuntos
Transtornos da Coagulação Sanguínea/diagnóstico , Coagulação Sanguínea/fisiologia , Transplante de Rim/efeitos adversos , Insuficiência Renal/cirurgia , Tromboelastografia , Transplante Heterólogo/efeitos adversos , Animais , Animais Geneticamente Modificados , Antígenos CD/genética , Apirase/genética , Transtornos da Coagulação Sanguínea/etiologia , Transtornos da Coagulação Sanguínea/mortalidade , Testes de Coagulação Sanguínea , Antígenos CD55/genética , Antígenos CD59/genética , Modelos Animais de Doenças , Humanos , Transplante de Rim/mortalidade , Macaca fascicularis , Masculino , Nefrectomia , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/mortalidade , Insuficiência Renal/etiologia , Insuficiência Renal/mortalidade , Análise de Sobrevida , Suínos , Transplante Heterólogo/mortalidade
19.
J Reprod Dev ; 59(2): 131-8, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23171593

RESUMO

Human embryos for hESC derivation are often donated at the cleavage stage and of reduced quality. Poor quality embryos have lower efficiency for hESC derivation. However, cleavage stage mouse embryos develop into higher quality expanded blastocysts if they are cultured with insulin, suggesting that this approach could be used to improve hESC derivation from poor quality cleavage stage embryos. The present study used a mouse model to examine this approach. In particular we examined the effect of insulin on the number of epiblast cells in blastocysts on days 4, 5 and 6 using Oct4 and Nanog co-expression. Second we examined the effect of insulin on the frequency with which outgrowths can be derived from these. Finally, we tested whether prior culture in the presence of insulin results in blastocysts with increased capacity to generate ESC colonies. Culture of cleavage stage embryos with insulin increased the number of Oct4 and Nanog positive cells in blastocysts at all time points examined. Prior culture with insulin had no effect on outgrowths generated from blastocysts plated on days 4 or 5. However, insulin treatment of blastocysts plated on day 6 resulted in increased numbers of outgrowths with larger epiblasts compared with controls. 13% of insulin treated day 6 blastocysts produced primary ESC colonies compared with 6% of controls. In conclusion, treatment with insulin can improve epiblast cell number in mice leading to an increase with which primary ESC colonies can be generated and may improve hESC isolation from reduced quality embryos donated at the cleavage stage.


Assuntos
Técnicas de Cultura Embrionária/métodos , Células-Tronco Embrionárias/efeitos dos fármacos , Camadas Germinativas/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Animais , Blastocisto/citologia , Blastocisto/efeitos dos fármacos , Blastocisto/metabolismo , Contagem de Células , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Proteínas de Homeodomínio/metabolismo , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo
20.
Stem Cells Dev ; 21(13): 2430-41, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22339667

RESUMO

High-quality embryos give rise to embryonic stem cells (ESCs) at greater efficiencies than poor-quality embryos. However, most embryos available for human ESC derivation are of a reduced quality as a result of culture in relatively simple media up to 10 years earlier, before cryopreservation, or before compaction. In the present study, we used a mouse model to determine whether a culture with insulin from the 8-cell stage could increase the number of ESC progenitor epiblast cells in blastocysts, as well as endeavor to determine the molecular mechanism of the insulin's effect. Culture in media containing 1.7 ρM insulin increased epiblast cell number (determined by Oct4 and Nanog co-expression), and proportion in day 6 blastocysts. The inhibition of phosphoinositide 3 kinase (PI3K) (via LY294002), an early second messenger of the insulin receptor, blocked this effect. The inhibition of glycogen synthase kinase 3 (GSK3) or p53, 2 s messengers inactivated by insulin signaling (via CT99021 or pifithrin-α, respectively), increased epiblast cell numbers. When active, GSK3 and p53 block the transcription of Nanog, which is important for maintaining pluripotency. A simultaneous inhibition of GSK3 and p53 had no synergistic effects on epiblast cell number. The induced activation of GSK3 and p53, via the inhibition of proteins responsible for their inactivation (PKA via H-89 and SIRT-1 via nicotinamide, respectively), blocked the insulin's effect on the epiblast.From our findings, we conclude that insulin increases epiblast cell number via the activation of PI3K, which ultimately inactivates GSK3 and p53. Furthermore, we suggest that the inclusion of insulin in culture media could be used as a strategy for increasing the efficiency with which the ESC lines can be derived from cultured embryos.


Assuntos
Técnicas de Cultura Embrionária , Camadas Germinativas/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Insulina/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Benzotiazóis/farmacologia , Contagem de Células , Cromonas/farmacologia , Meios de Cultura/metabolismo , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Ativação Enzimática , Feminino , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Isoquinolinas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfolinas/farmacologia , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Piridinas/farmacologia , Pirimidinas/farmacologia , Receptor de Insulina/metabolismo , Transdução de Sinais , Sulfonamidas/farmacologia , Tolueno/análogos & derivados , Tolueno/farmacologia , Transcrição Gênica , Proteína Supressora de Tumor p53/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...